First Exam MTH 221, Fall 2011

Ayman Badawi

QUESTION 1. Each = 2.5 points, Circle the correct answer

(i) One of the following matrices is non-invertible (singular)
a) $\left[\begin{array}{cc}3 & -9 \\ 2 & 6\end{array}\right]$
b) $\left[\begin{array}{cc}8 & -12 \\ -4 & 6\end{array}\right]$
c) $\left[\begin{array}{ccc}4 & 0 & 0 \\ -2 & -1 & 0 \\ 4 & 5 & 6\end{array}\right]$
d) None of the previous is correct.
(ii) If A is a 3×3 matrix and $\operatorname{det}(A)=2$ and $\operatorname{det}\left(A^{2}-A\right)=4$, then $\operatorname{det}\left(A-I_{3}\right)=$
a) 1
b) 2
c) 3
d) Cannot be determined
(iii) If A is a 3×3 matrix such that $\operatorname{det}(A)=6.3$, then one of the following statements is correct about the system $A X=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
a)It is possible that $x_{1}=x_{2}=x_{3}=1$ is a solution to the system.
b) It is possible that the system has infinitely many solutions.
c) $x_{1}=x_{2}=x_{3}=0$ is the only solution to the system
d) (a) and (b) are correct.

a) 8
b) 16
c) 4
d) cannot be determined
(v) In the previous question. Let E be an elementary matrix such that $E B=A_{1}$. Then $E=$
a) $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1\end{array}\right]$
b) $\left[\begin{array}{ccc}-3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
c) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1\end{array}\right]$
d) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3\end{array}\right]$
(vi) in Question (iv). Let F be an elementary matrix such that $F A=A_{1}$. Then $F=$
a) $\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
b) $\left[\begin{array}{ccc}0.5 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
c) $\left[\begin{array}{ccc}-0.5 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
d) None of the previous is correct
(vii) In Question (iv), $\operatorname{det}\left(2 A_{1}\right)=$
a) 8
b) 16
c) 64
d) 4
(viii) Let A as in (iv). The solution to the system $A X=\left[\begin{array}{l}1 \\ 4 \\ 0\end{array}\right]$ is
a) $x_{1}=-3, x_{2}=2, x_{3}=0$
b) $x_{1}=-3.75, x_{2}=\frac{4.75}{2}, x_{3}=0.25$
c) $x_{1}=-2, x_{2}=x_{3}=2$
d)None of the previous
(ix) Let A, B be invertible 10×10 matrices. Then one of the following statements is correct:
a) A is row-equivalent to B
b) there are elementary 10×10 matrices, say E_{1}, \ldots, E_{n}, such that $E_{1} E_{2} \cdots E_{n} A=$ B.
c) There is an invertible 10×10 matrix, say D, such that $D A=B$.
d) All the previous are correct
(x) If A, B are 4×4 non-invertible matrices, then one of the following statement is correct.
a) A is row-equivalent to B.
b) If $C A=B$, then $\operatorname{det}(C)=0$
c) A is not row-equivalent to B.
d) None of the previous is correct.
(xi) Let A be a 4×4 matrix such that $\operatorname{det}(A)=-3$. Let B be the third column of A. Then one of the following statement is correct:
a)It is possible to have $x_{1}=x_{2}=x_{4}=-1$, and $x_{3}=4$ as a solution to the system $A X=B$.
b) It is possible that the system $A X=B$ has infinitely many solutions
c) $x_{1}=x_{2}=x_{4}=0, x_{3}=1$ is the only solution to the system $A X=B$.
d) More information is needed in order to solve $A X=B$.
(xii) Let A be a 2×2 matrix and $B=\left[\begin{array}{ll}a_{1} & a_{2} \\ a_{3} & a_{4}\end{array}\right]$. Given $B A=C=\left[\begin{array}{ll}a_{1}+a_{2} & 2 a_{2} \\ a_{3}+a_{4} & 2 a_{4}\end{array}\right]$. Given $\operatorname{det}(C)=0$. Then $A^{-1}=$
a) Does not exist
b) $\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$.
c) $\left[\begin{array}{cc}1 & 0 \\ -0.5 & 0.5\end{array}\right]$.
d) None of the previous is correct
(xiii) let $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ -1 & 0 & -1 \\ -1 & -1 & 0\end{array}\right]$. Then A^{-1}
a) $\left[\begin{array}{ccc}1 & -1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
b) $\left[\begin{array}{ccc}-1 & -1 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$
c) $\left[\begin{array}{ccc}0 & -1 & -1 \\ 1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
d) None of the above
(xiv) Let A as above. Then a solution to $A X=\left[\begin{array}{c}-1 \\ -1 \\ 0\end{array}\right]$ is
a) $x_{1}=-1, x_{2}=-1, x_{3}=0$
b) $x_{1}=2, x_{2}=-2, x_{3}=-1$
c) the system has infinitely many solution.
d) none of the previous is correct
(xv) The values of k which make the system $\left[\begin{array}{ccc}1 & 1 & 1 \\ -1 & -1 & k \\ -2 & -2 & 2 k\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}1 \\ 4 \\ -2\end{array}\right]$ consistent are
a) $k=-1$
b) $k \neq-1$
c) $k \neq-0.5$ and $k \neq-1$
d) There are no values for k that will make the system consistent
(xvi) The values of k which make the system $\left[\begin{array}{ccc}4 & 0 & 2 \\ -2 & 0 & -1 \\ -4 & 0 & k\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}-4 \\ k \\ 4\end{array}\right]$ has infinitely many solution
a) $k=-2$
b) $k \neq-2$
c) $k \neq 2$
d) $k=2$
(xvii) Assume the system in question (xvi) is consistent. Then a solution to the system is
a) $x_{1}=-1, x_{2}=4.02, x_{3}=0$
b) $x_{1}=-4, x_{2}=x_{3}=0$
c) $x_{1}=0, x_{2}=-1, x_{3}=0$
d) $x_{1}=4, x_{2}=0, x_{3}=2$.
(xviii) The solution to the system $\left[\begin{array}{ccc}1 & 1 & -2 \\ -1 & 0 & 4 \\ -2 & -3 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}2 \\ 0 \\ -6\end{array}\right]$ is
a. $x_{1}=0, x_{2}=2, x_{3}=0 \quad$ b. $\quad x_{1}=1, x_{2}=1 x_{3}=0 \quad$ c. $\quad x_{1}=0, x_{2}=1, x_{3}=-1 \mathrm{~d}$. The system has infinitely many solutions.
(xix) Given $A^{-1}=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 4 & 2\end{array}\right]$ and $B^{-1}=\left[\begin{array}{ccc}1 & 1 & 0 \\ 1 & 0 & 2 \\ -1 & -1 & 2\end{array}\right]$. Let $C=(A B)^{-1}$. The (3, 2)-entry of C is
a) -2
b) 7
c) 4
d) None of the previous.
(xx) In the previous question, the $(2,3)$-entry of B is
a) 0
b) 1
c) -1
d) 0.5
e) -0.5

Faculty information

